Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Surg ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38446844

RESUMEN

BACKGROUND: The C-reactive protein/lymphocyte ratio (CLR) is a prognostic biomarker of various diseases. However, its significance in acute pancreatitis (AP) remains unknown. The main aim of this study was to investigate the association between the CLR and disease severity in patients with AP. METHODS: This cross-sectional study included 476 AP patients (mild acute pancreatitis (MAP), n =176; moderately severe acute pancreatitis (MSAP) and severe acute pancreatitis (SAP), n=300). The primary exposure of interest was the baseline CLR. The primary outcome was the incidence of moderate to severe AP. Multivariate logistic regression and restricted cubic spline analyses were performed to evaluate the association between the CLR and the incidence of moderate to severe AP. Receiver operating characteristic (ROC) analysis was conducted to assess the predictive efficacy, sensitivity, and specificity of CLR in predicting the incidence of moderate to severe AP. RESULTS: The mean age of the patients was 44±13.2 years, and 76.5% were male. The distribution of CLR was 31.6 (interquartile range, 4.5, 101.7). Moderate to severe AP occurred in 300 cases (63.0%). After multiple adjustments, CLR was independently associated with the incidence of moderate to severe AP (odds ratio [OR], 1.04; 95% confidence interval [CI], 1.03, 1.05; P< 0.001). A nonlinear relationship was found between CLR and the incidence of moderate to severe AP, with a threshold of approximately 45. The effect size and CI below and above the threshold value were 1.061 (1.033-1.089) and 1.014 (0.997-1.031), respectively. The area under the curve (AUC) for CLR was 87.577% (95% CI: 84.443% ~ 90.710%) with an optimal cut-off value of 30.835, resulting in a sensitivity of 73.7% and a specificity of 88.6%. CONCLUSIONS: There was a nonlinear relationship with a saturation effect between the CLR and the incidence of moderate to severe AP. The CLR measured within 24 h of admission may serve as a promising biomarker for predicting the emergence of moderate to severe AP, thereby providing a more scientifically grounded basis for preventing such cases. Nonetheless, further research is warranted to validate and strengthen these findings.

2.
Cancer Cell Int ; 24(1): 83, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402402

RESUMEN

Apatinib was the first anti-angiogenic agent approved for treatment of metastatic gastric cancer (GC). However, the emergence of resistance was inevitable. Thus investigating new and valuable off-target effect of apatinib directly against cancer cells is of great significance. Here, we identified extra spindle pole bodies-like 1 (ESPL1) was responsible for apatinib resistance in GC cells through CRISPR genome-wide gain-of-function screening. Loss of function studies further showed that ESPL1 inhibition suppressed cell proliferation, migration and promoted apoptosis in vitro, and accordingly ESPL1 knockdown sensitized GC cells to apatinib. In addition, we found ESPL1 interacted with mouse double minute 2 (MDM2), a E3 ubiquitin protein ligase, and the combination of MDM2 siRNA with apatinib synergistically ameliorated the resistance induced by ESPL1 overexpression. In summary, our study indicated that ESPL1 played a critical role in apatinib resistance in GC cells. Inhibition of MDM2 could rescue the sensitivity of GC cells to apatinib and reverse ESPL1-mediated resistance.

3.
RSC Adv ; 14(10): 7124-7130, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38414987

RESUMEN

Enhancement of the adsorption performance and recyclability of adsorbents is a crucial aspect of water treatment. Herein, we used one-dimensional porous boron nitride (PBN) as a carrier to load Fe3O4 nanoparticles for the preparation of Fe3O4 nanoparticles-functionalized porous boron nitride (Fe3O4/PBN) via a ball milling method. The high-energy ball milling promoted the creation of a negatively charged PBN surface and facilitated the uniform distribution of Fe3O4 nanoparticles on the surface of PBN. The adsorption performance of Fe3O4/PBN toward cationic dyes could be significantly improved while no enhancement was observed for anionic dyes. The great adsorption performance of Fe3O4/PBN is due to its surface functional groups and surface defects formed in the ball milling process. Moreover, the strong interaction force between Fe3O4/PBN and cationic dyes promotes rapid initial adsorption due to their negatively charged surface. Magnetic measurements demonstrated that Fe3O4/PBN is superparamagnetic. The composites with low loadings of Fe3O4 nanoparticles could be quickly separated from the aqueous solution under a low applied magnetic field, improving their recyclability. This work highlights the role of ball milling in improving the adsorption performance of Fe3O4/PBN and greatly promotes the practical application of Fe3O4/PBN in the field of environmental purification.

4.
Inorg Chem ; 63(2): 1188-1196, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38175718

RESUMEN

Metal-organic frameworks (MOFs) with long persistent luminescence (LPL) have attracted extensive research attention from researchers due to their potential applications in information encryption, anticounterfeiting technology, and security logic. In contrast to short-lived fluorescent materials, LPL materials offer a visible response that can be easily distinguished by the naked eye, thereby facilitating a much clearer visualization. However, there are few reports on functional LPL MOF materials as probes. In this article, two amino-functional LPL MOFs (VB4-2D and VB4-1D) were synthesized. They both exhibited adjustable fluorescence and phosphorescence from blue to green and from cyan to green, respectively. Notably, the MOFs emitted bright and adjustable LPL upon the removal of the different radiation sources. The basic amino functional groups in the MOFs exhibited acid and ammonia sensitivity, and fluorescence and phosphorescence emission intensities can be burst and restored in two atmospheres, respectively, which can be cycled multiple times. Furthermore, LPL intensity undergoes switching between two different conditions as well, which can be visually discerned by the naked eye, enabling visual sensing of volatiles by LPL. This combination of photoluminescence and the visual LPL switching behavior of acids and bases in functional MOFs may provide an effective avenue for stimulus response, anticounterfeiting, and encryption applications.

5.
Sci Adv ; 10(3): eadj6417, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38232154

RESUMEN

Utilization of in situ/operando methods with broad beams and localized probes has accelerated our understanding of fluid-surface interactions in recent decades. The closed-cell microchips based on silicon nitride (SiNx) are widely used as "nanoscale reactors" inside the high-vacuum electron microscopes. However, the field has been stalled by the high background scattering from encapsulation (typically ~100 nanometers) that severely limits the figures of merit for in situ performance. This adverse effect is particularly notorious for gas cell as the sealing membranes dominate the overall scattering, thereby blurring any meaningful signals and limiting the resolution. Herein, we show that by adopting the back-supporting strategy, encapsulating membrane can be reduced substantially, down to ~10 nanometers while maintaining structural resiliency. The systematic gas cell work demonstrates advantages in figures of merit for hitherto the highest spatial resolution and spectral visibility. Furthermore, this strategy can be broadly adopted into other types of microchips, thus having broader impact beyond the in situ/operando fields.

6.
Materials (Basel) ; 16(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38005127

RESUMEN

BiFeO3/La0.7Sr0.3MnO3 (BFO/LSMO) epitaxial heterostructures were successfully synthesized by pulsed laser deposition on (001)-oriented SrTiO3 single-crystal substrates with Au top electrodes. Stable bipolar resistive switching characteristics regulated by ferroelectric polarization reversal was observed in the Au/BFO/LSMO heterostructures. The conduction mechanism was revealed to follow the Schottky emission model, and the Schottky barriers in high-resistance and low-resistance states were estimated based on temperature-dependent current-voltage curves. Further, the observed memristive behavior was interpreted via the modulation effect on the depletion region width and the Schottky barrier height caused by ferroelectric polarization reversal, combining with the oxygen vacancies migration near the BFO/LSMO interface.

7.
Chemistry ; 29(52): e202301469, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385953

RESUMEN

In this work, an organic-inorganic hybrid crystal, violet-crystal (VC), was used to etch the nickel foam (NF) to fabricate a self-standing electrode for the water oxidation reaction. The efficacy of VC-assisted etching manifests the promising electrochemical performance towards the oxygen evolution reaction (OER), requiring only ~356 and ~376 mV overpotentials to reach 50 and 100 mA cm-2 , respectively. The OER activity improvement is attributed to the collectively exhaustive effects arising from the incorporation of various elements in the NF, and the enhancement of active site density. Furthermore, the self-standing electrode is robust, exhibiting a stable OER activity after 4,000 cyclic voltammetry cycles, and ~50 h. The anodic transfer coefficients (αa ) show that the first electron transfer step is the rate-determining step on the surface of NF-VCs-1.0 (NF etched by 1 g of VCs) electrode, while the chemical step involving dissociation following the first electron transfer step is identified as the rate-limiting step in other electrodes. The lowest Tafel slope value observed in the NF-VCs-1.0 electrode indicates the high surface coverage of oxygen intermediates and more favorable OER reaction kinetics, as confirmed by high interfacial chemical capacitance and low charge transport/interfacial resistance. This work demonstrates the importance of VCs-assisted etching of NF to activate the OER, and the ability to predict reaction kinetics and rate-limiting step based on αa values, which will open new avenues to identify advanced electrocatalysts for the water oxidation reaction.

8.
J Nat Prod ; 86(5): 1240-1250, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37145877

RESUMEN

Mass spectrometry-based dereplication and prioritization led to the discovery of four multi-N-methylated cyclodecapeptides, auyuittuqamides E-H (1-4), from a soil-derived Sesquicillium sp. The planar structures of these compounds were elucidated based on analysis of HRESIMS and NMR data. Absolute configurations of the chiral amino acid residues were assigned by a combination of the advanced Marfey's method, chiral-phase LC-MS analysis, and J-based configuration analysis, revealing that 1-4 contain both d- and l-isomers of N-methylleucine (MeLeu). Differentiation of d- and l-MeLeu in the sequence was achieved by advanced Marfey's analysis of the diagnostic peptide fragments generated from partial hydrolysis of 1. Bioinformatic analysis identified a putative biosynthetic gene cluster (auy) for auyuittuqamides E-H, and a plausible biosynthetic pathway was proposed. These newly identified fungal cyclodecapeptides (1-4) displayed in vitro growth inhibitory activity against vancomycin-resistant Enterococcus faecium with MIC values of 8 µg/mL.


Asunto(s)
Aminoácidos , Fragmentos de Péptidos , Aminoácidos/química , Cromatografía Liquida , Espectrometría de Masas , Estructura Molecular , Péptidos Cíclicos/análisis , Péptidos Cíclicos/química
9.
Nutrients ; 15(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37111171

RESUMEN

This study aimed to investigate the dose-response effect of Bifidobacterium breve CCFM683 on relieving psoriasis and its underlying patterns. Specifically, the expression of keratin 16, keratin 17, and involucrin were substantially decreased by administration of 109 CFU and 1010 CFU per day. Moreover, interleukin (IL)-17 and TNF-α levels were substantially decreased by 109 and 1010 CFU/day. Furthermore, the gut microbiota in mice treated with 109 or 1010 CFU/day was rebalanced by improving the diversity, regulating microbe interactions, increasing Lachnoclostridium, and decreasing Oscillibacter. Moreover, the concentrations of colonic bile acids were positively correlated with the effectiveness of the strain in relieving psoriasis. The gavage dose should be more than 108.42 CFU/day to improve psoriasis according to the dose-effect curve. In conclusion, CCFM683 supplementation alleviated psoriasis in a dose-dependent manner by recovering microbiota, promoting bile acid production, regulating the FXR/NF-κB pathway, diminishing proinflammatory cytokines, regulating keratinocytes, and maintaining the epidermal barrier function. These results may help guide probiotic product development and clinical trials in psoriasis.


Asunto(s)
Bifidobacterium breve , Probióticos , Psoriasis , Animales , Ratones , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Queratinocitos , Citocinas
10.
Nat Chem ; 15(1): 119-128, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280766

RESUMEN

Interactions between the microbiota and their colonized environments mediate critical pathways from biogeochemical cycles to homeostasis in human health. Here we report a soil-inspired chemical system that consists of nanostructured minerals, starch granules and liquid metals. Fabricated via a bottom-up synthesis, the soil-inspired chemical system can enable chemical redistribution and modulation of microbial communities. We characterize the composite, confirming its structural similarity to the soil, with three-dimensional X-ray fluorescence and ptychographic tomography and electron microscopy imaging. We also demonstrate that post-synthetic modifications formed by laser irradiation led to chemical heterogeneities from the atomic to the macroscopic level. The soil-inspired material possesses chemical, optical and mechanical responsiveness to yield write-erase functions in electrical performance. The composite can also enhance microbial culture/biofilm growth and biofuel production in vitro. Finally, we show that the soil-inspired system enriches gut bacteria diversity, rectifies tetracycline-induced gut microbiome dysbiosis and ameliorates dextran sulfate sodium-induced rodent colitis symptoms within in vivo rodent models.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Humanos , Animales , Suelo/química , Colitis/inducido químicamente , Colitis/metabolismo , Homeostasis , Modelos Animales de Enfermedad
11.
Artículo en Inglés | MEDLINE | ID: mdl-36361481

RESUMEN

Paroxetine is a common pharmaceutical to treat depression and has been found to pose threats to aquatic organisms. However, little is known about the effects of paroxetine on the nutrient cycle in aquatic environments. Therefore, DNA metabarcoding is used in this study to analyze the effects of paroxetine on multi-trophic microorganisms and nitrogen transformation in river sediments. Although paroxetine has no significant effect on the diversity of microbenthos, changes in benthic nitrogen-converting bacteria are consistent with the change in the various forms of nitrogen in the sediment, indicating that paroxetine affects the nitrogen conversion process by affecting nitrogen-converting bacteria. In addition, it is found that paroxetine has the ability to influence nitrogen transformation in an indirect way by affecting the trophic transfer efficiency of higher trophic levels (meiofauna and protozoa, protozoa and protozoa), subsequently affecting the growth of nitrogen-converting bacteria through a top-down mechanism (i.e., predation).The results show that paroxetine affects nitrogen transformation directly by affecting nitrogen-converting bacteria and indirectly through top-down effects, emphasizing that the assessment of paroxetine's ecological risks should consider species within different trophic levels.


Asunto(s)
Cadena Alimentaria , Ríos , Nitrógeno , Paroxetina/farmacología , Organismos Acuáticos , Bacterias , Sedimentos Geológicos/microbiología , Ecosistema
12.
Nanomaterials (Basel) ; 12(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36080054

RESUMEN

Continued development of lithium-ion batteries is limited by the shortage of Li element. In this situation, the exploration of high-performance sodium-ion batteries is attracting much attention. In this experimental work, Na2/3Ni1/4Mn34O2 film cathode materials were fabricated by excimer laser deposition at different oxygen partial pressures. X-ray diffraction studies and field emission scanning electron microscopy revealed high c-axis orientation and uniform grain distribution, respectively, in the deposited films. Furthermore, after 30 cycles under a current density of 13 mA g-1, the film samples deposited at an oxygen partial pressure of 65 Pa exhibited a high capacity-retention of 91%. The film structure also had a large-current discharge performance, which makes practical applications possible.

13.
ACS Appl Mater Interfaces ; 14(25): 29099-29110, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35713882

RESUMEN

The frame structure combined with water- and heat-transfer capabilities fully satisfies the requirements of photothermal conversion materials in seawater evaporation applications. Meanwhile, it must integrate the characteristics of a high photothermal conversion rate, thermal management, and water transportation. Herein, lamellar porous films were successfully designed and synthesized by a simple ultrasonic-assisted vacuum filtration method. In this process, polystyrene sulfonate@carbon nanotubes/reduced graphene oxide (PSS@CNT/rGO) lamellar films were constructed by the one-dimensional synthesis of PSS@CNT self-assembled at the molecular scale and the two-dimensional matrix material rGO. It is worth noting that the lamellar film exhibits a high specific surface area (285.5 m2·g-1), which is reflected in its abundant nanopores. Among them, the porous network system composed of nanochannels can provide efficient water supply and steam-transfer ability and strengthen the heat insulation performance of thermal localization, which is beneficial to photothermal evaporation. The obtained PSS@CNT/rGO lamellar films achieved a condensed water yield of 1.825 kg·m-2·h-1 under 1 sun illumination (1 kW·m-2), and their solar-vapor conversion efficiency was 97.1%. Simultaneously, the interaction between the water flow and the carbon material interface was also used to generate additional electric energy output. The maximum open-circuit voltage of 0.46 V was generated at both termini of the PSS@CNT/rGO lamellar film, which successfully realized the multieffect utilization of energy. These results show that the multistage assembly strategy is a facile and effective means for the development of an efficient evaporation photothermal film, which offers significant value in the field of photothermal seawater evaporation and power generation.

14.
J Antibiot (Tokyo) ; 75(5): 247-257, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35288678

RESUMEN

Three new lipopeptaibols, halovirs I-K (1-3), were isolated from the solid culture of the phytopathogenic fungus Paramyrothecium roridum NRRL 2183. Their planar structures, which consist of a hexapeptide backbone and acyl substitutions at the N- and C-termini, were elucidated by comprehensive analysis of the 1D and 2D NMR spectroscopic data along with the detailed interpretation of the MS/MS fragmentation pattern. Absolute configurations of the amino acid/1,2-amino alcohol residues were determined using the advanced Marfey's method. Bioinformatics analysis of the genome assembly of P. roridum NRRL 2183 revealed a gene cluster that is likely responsible for the biosynthesis of halovirs I-K. Analysis of the module and domain organization of the putative halovir synthetase PrHalA indicated that the assembly of 1-3 proceeds in an unconventional nonlinear fashion. 1 and 2 exhibited potent antibacterial activity against both antibiotic-sensitive and multidrug-resistant Gram-positive pathogens. These lipopeptaibols also displayed significant cytotoxicity toward human lung carcinoma A549, human breast carcinoma MCF-7, and human cervical carcinoma HeLa cells with IC50 values ranging from 1.3 to 3.3 µM.


Asunto(s)
Antineoplásicos , Carcinoma , Hypocreales , Antibacterianos/farmacología , Antineoplásicos/química , Células HeLa , Humanos , Hypocreales/química , Estructura Molecular , Espectrometría de Masas en Tándem
15.
IEEE Trans Cybern ; 52(4): 2440-2452, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32649285

RESUMEN

Deep multitask learning (MTL) shares beneficial knowledge across participating tasks, alleviating the impacts of extreme learning conditions on their performances such as the data scarcity problem. In practice, participators stemming from different domain sources often have varied complexities and input sizes, for example, in the joint learning of computer vision tasks with RGB and grayscale images. For adapting to these differences, it is appropriate to design networks with proper representational capacities and construct neural layers with corresponding widths. Nevertheless, most of the state-of-the-art methods pay little attention to such situations, and actually fail to handle the disparities. To work with the dissimilitude of tasks' network designs, this article presents a distributed knowledge-sharing framework called tensor ring multitask learning (TRMTL), in which the relationship between knowledge sharing and original weight matrices is cut up. The framework of TRMTL is flexible, which is not only capable of sharing knowledge across heterogenous networks but also able to jointly learn tasks with varied input sizes, significantly improving performances of data-insufficient tasks. Comprehensive experiments on challenging datasets are conducted to empirically validate the effectiveness, efficiency, and flexibility of TRMTL in dealing with the disparities in MTL.


Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Aprendizaje , Páncreas
16.
J Gastrointest Oncol ; 13(6): 2832-2844, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36636064

RESUMEN

Background: Long non-coding ribonucleic acids (lncRNAs) are a class of non-coding RNAs implicated in the development of many malignancies, including gastric cancer (GC). In this study, we investigated the functions and molecular mechanisms of non-coding RNA activated by deoxyribonucleic acid damage (NORAD) in GC. Methods: NORAD expression at the messenger RNA levels was determined by quantitative reverse transcriptase (RT)-polymerase chain reaction assays. Cell proliferation, migration, and invasion were detected by Cell Counting Kit-8 assays, in-vivo tumor formation assays, and Transwell assays. Cell-cycle distribution was detected by a flow cytometry analysis. NORAD location was detected by nucleocytoplasmic fractionation assays. The interaction between NORAD and the microRNA-204-5p (miR-204-5p)/Lysine Methyltransferase 2D (KMT2D) axis was verified by dual-luciferase reporter gene assays and RNA binding protein immunoprecipitation (RIP) assays. Western blot was used to study the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinases (PI3K)/protein kinase B (AKT) signaling pathway. Results: NORAD was upregulated in the GC tissues and cell lines. The silencing of NORAD repressed cell proliferation and the Growth 2 (G2)/Mitosis (M) cell-cycle transition in GC. NORAD also regulated KMT2D expression by targeting miR-204-5p and mediated PTEN/PI3K/AKT signaling in GC. Conclusions: We found that NORAD acts as an oncogene in GC. Our findings might provide a novel therapeutic target for GC.

17.
Nat Mater ; 20(10): 1378-1384, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34341524

RESUMEN

Thermoelectric materials generate electric energy from waste heat, with conversion efficiency governed by the dimensionless figure of merit, ZT. Single-crystal tin selenide (SnSe) was discovered to exhibit a high ZT of roughly 2.2-2.6 at 913 K, but more practical and deployable polycrystal versions of the same compound suffer from much poorer overall ZT, thereby thwarting prospects for cost-effective lead-free thermoelectrics. The poor polycrystal bulk performance is attributed to traces of tin oxides covering the surface of SnSe powders, which increases thermal conductivity, reduces electrical conductivity and thereby reduces ZT. Here, we report that hole-doped SnSe polycrystalline samples with reagents carefully purified and tin oxides removed exhibit an ZT of roughly 3.1 at 783 K. Its lattice thermal conductivity is ultralow at roughly 0.07 W m-1 K-1 at 783 K, lower than the single crystals. The path to ultrahigh thermoelectric performance in polycrystalline samples is the proper removal of the deleterious thermally conductive oxides from the surface of SnSe grains. These results could open an era of high-performance practical thermoelectrics from this high-performance material.

18.
ACS Appl Mater Interfaces ; 13(34): 40705-40712, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405984

RESUMEN

Molybdenum carbides have been expected to be one of the promising catalysts for the hydrogen evolution reaction (HER) due to their similar d-band electronic structures to the Pt-group metals. However, the weaker hydrogen-adsorption ability of MoC severely hinders its applications. Guided by density functional theory calculations, we put forward a strategy to design the novel MoC-based electrocatalyst with surface reconstruction through sulfur doping. The incorporation of minor sulfur not only greatly increases the number of active sites and intrinsic activity but also optimizes the electronic structure to improve the electron transfer efficiency. As a result, the as-prepared sulfur-substituted MoC tackles the limitation of the Volmer step and exhibits superior HER performance with a small Tafel slope of 48 mV dec-1. Theoretical investigations demonstrate that the terminal sulfur plays a critical role in facilitating a close to zero hydrogen adsorption energy (ΔGH*) and a lower hydrogen release barrier.

19.
Water Res ; 203: 117538, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34416651

RESUMEN

Catastrophic shifts in river ecosystems can abruptly degrade their structures and functions, often reducing the efficacy of traditional remediation targeting physicochemical properties. Alternative stable states theory can not only explain this phenomenon but also provide a new insight into river restoration; however, little is known about the existence and implications of alternative stable states in a river. Considering the important role of benthic microbiota in sustaining river ecosystem structures and functions, ecological theory and high-throughput sequencing were combined to firstly investigate multi-stability in microbial communities and its relationship with environmental factors in river sediments. The Nanjing reach of the Yangtze River was selected as the study area because of its huge spatial heterogeneity and varying degrees of pollution. Bimodal distributions combined with temporal variations of microbiota status provided direct evidence of bistability by showing the instability at the intermediate. In addition, environmental stress, particularly concentrations of NH4+-N and NO3--N, was identified as an important driver of alternative microbiota states from the perspectives of the behavior of bistable ecosystems. Comparison of α-diversity indices and network properties between two alternative microbiota states revealed that the diversity and co-occurrence pattern of microbial communities will be high if they are settled in favorable environments (i.e., comprehensive sediment quality identification index > 3.7). Key taxa, including Clostridiales, Nitrospirales and Myxococcales, were discerned by combining LEfSe and network analysis, and their strong interspecies interactions were believed to be an important factor in triggering alternative microbiota states. This study suggests alternative stable states theory should be considered in river remediation to better understand the response of river ecosystems to environmental stress and the effect of hysteresis, benefiting the implementation of effective monitoring and restoration strategies in a river of urban area.


Asunto(s)
Microbiota , Ríos , Bacterias , China , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos
20.
Ann Palliat Med ; 10(3): 3009-3017, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33849091

RESUMEN

BACKGROUND: This study sought to test the effectiveness of EVOSKIN®Palm and sole moisturizing cream (PSMC) in preventing and treating hand-foot syndrome (HFS) during capecitabine chemotherapy. METHODS: Stage II/III colorectal cancer patients receiving capecitabine adjuvant chemotherapy were randomly allocated to receive either EVOSKINPSMC or physiological saline treatments for their hands and feet. Treatment was initiated along with adjuvant chemotherapy and continued till the end of chemotherapy. Participants' skin responses were evaluated every 3 weeks. RESULTS: During the study, 51 participants in the EVOSKIN PSMC group and 54 participants in the physiological saline group completed at least three cycles of capecitabine chemotherapy. The total incidence of HFS in the EVOSKIN PSMC group was lower than that in the physiological saline group (56.8% vs. 75.9%, P=0.006), as was the incidence of Grade 3/4 HFS (6.0% vs. 18.5%, P=0.011). The incidence of HFS became significant after 6weeks of chemotherapy. Further, the incidence of severe HFS was significant from as early as 3weeks after the commencement of chemotherapy despite the use of EVOSKIN PSMC to manage the condition. Notably, the incidence of Grade 1/2 HFS was not statistically significant between the two groups (26/51 vs. 32/54, 52.0% vs. 59.2%, P=0.194). CONCLUSIONS: The incidence of severe HFS among individuals using oral capecitabine can be reduced by the prophylactic treatment of EVOSKIN PSMC, this treatment is reasonable and acceptable for patients with capecitabine chemotherapy.


Asunto(s)
Neoplasias Colorrectales , Síndrome Mano-Pie , Antimetabolitos Antineoplásicos/uso terapéutico , Capecitabina/efectos adversos , Quimioterapia Adyuvante , Neoplasias Colorrectales/tratamiento farmacológico , Síndrome Mano-Pie/tratamiento farmacológico , Síndrome Mano-Pie/etiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...